Planar directional contributions to optic flow responses in MST neurons.
نویسندگان
چکیده
Many neurons in the dorsal region of the medial superior temporal area (MSTd) of monkey cerebral cortex respond to optic flow stimuli in which the center of motion is shifted off the center of the visual field. Each shifted-center-of-motion stimulus presents both different directions of planar motion throughout the visual field and a unique pattern of global motion across the visual field. We investigated the contribution of planar motion to the responses of these neurons in two experiments. In the first, we compared the responses of 243 neurons to planar motion and to shifted-center-of-motion stimuli created by vector summation of planar motion and radial or circular motion. We found that many neurons preferred the same directions of motion in the combined stimuli as in the planar stimuli, but other neurons did not. When we divided our sample into one group with stronger directionality to both planar and vector combination stimuli and one group with weaker directionality, we found that the neurons with the stronger directionality were those that showed the greatest similarity in the preferred direction of motion for both the planar and combined stimuli. In a second set of experiments, we overlapped planar motion and radial or circular motion to create transparent stimuli with the same motion components as the vector combination stimuli, but without the shifted centers of motion. We found that the neurons that responded most strongly to the planar motion when it was combined with radial or circular motion also responded best when the planar motion was overlapped by a transparent motion stimulus. We conclude that the responses of those neurons with stronger directional responses to both the motion of planar and vector combination stimuli are most readily understood as responding to the total planar motion in the stimulus, a planar motion mechanism. Other neurons that had weaker directional responses showed no such similarity in the preferred directions of planar motion in the vector combination and the transparent overlap stimuli and fit best with a mechanism dependent on the global motion pattern. We also found that neurons having significant responses to both radial and circular motion also responded to the spiral stimuli that result from a vector combination of radial and circular motion. The preferred planar-spiral vector combination stimulus was frequently the one containing that neurons' preferred direction of planar motion, which makes them similar to other MSTd neurons.
منابع مشابه
Receptive field dynamics underlying MST neuronal optic flow selectivity.
Optic flow informs moving observers about their heading direction. Neurons in monkey medial superior temporal (MST) cortex show heading selective responses to optic flow and planar direction selective responses to patches of local motion. We recorded MST neuronal responses to a 90 x 90 degrees optic flow display and to a 3 x 3 array of local motion patches covering the same area. Our goal was t...
متن کاملMST neurons respond to optic flow and translational movement.
We recorded the responses of 189 medial superior temporal area (MST) neurons by using optic flow, real translational movement, and combined stimuli in which matching directions of optic flow and real translational movement were presented together. One-half of the neurons (48%) showed strong responses to optic flow simulating self-movement in the horizontal plane, and 24% showed strong responses...
متن کاملThe 'ecological' probability density function for linear optic flow: implications for neurophysiology.
A theoretical analysis of the recovery of shape from optic flow highlights the importance of the deformation components; however, pure deforming stimuli elicit few responses from flow-sensitive neurons in the medial superior temporal (MST) area of the cerebral cortex. This finding has prompted the conclusion that MST cells are not involved in shape recovery. However, this conclusion may be unju...
متن کاملSensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli.
1. In these experiments we examined the receptive field mechanisms that support the optic flow field selective responses of neurons in the dorsomedial region of the medial superior temporal area (MSTd). Our experiments tested the predictions of two hypotheses of optic flow field selectivity. The direction mosaic hypothesis states that these receptive fields contain a set of planar direction-sel...
متن کاملMST responses to pursuit across optic flow with motion parallax.
Self-movement creates the patterned visual motion of optic flow with a focus of expansion (FOE) that indicates heading direction. During pursuit eye movements, depth cues create a retinal flow field that contains multiple FOEs, potentially complicating heading perception. Paradoxically, human heading perception during pursuit is improved by depth cues. We have studied medial superior temporal (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 77 2 شماره
صفحات -
تاریخ انتشار 1997